不同极片的电解液浸润速率

时间:2019-08-07 11:35来源:锂想生活 作者:综合报道
点击:


不同极片的电解液浸润速率

 

电池极片的电解液浸润对性能影响很大,电解液浸润效果不好时,离子传输路径变远,阻碍了锂离子在正负极之间的穿梭,未接触电解液的极片无法参与电池电化学反应,同时电池界面电阻增大,影响锂电池的倍率性能、放电容量和使用寿命。不同极片的电解液浸润情况会怎么样?

 

 

实验方法

 

 

实验装置如下图所示,装置处于惰性气体保护氛围中。电解液容器放置在可加热的升降平台上,平台升降通过电机驱动,可以精确控制位移。极片样品悬挂在电子天平上,控制升降平台使极片样品浸没在电解液中5mm。数据采集器实时记录样品重量增加数据,通过质量—时间(m—t)数据分析极片的电解液浸润速率。
 

 

电解液浸润速率测试装置示意图

 

 

理论模型

 

 

电极中的电解质润湿过程是由毛细管力驱动的自发液体吸附过程,忽略惯性和重力的影响,因此,电极中电解液重量随时间变化的关系可用修正的 Lucas-Washburn 方程描述、即公式 2-1a 和 2-1b 。

 

 

 

 

其中,t:时间;△m:m-t 曲线中电解液的质量;ρsol:溶液密度;Ae:极片样品的横截面积;K:电解液在多孔电极的浸润速率,P:电极孔隙率;reff:电极有效孔径; 电解液溶液表面张力;θ,电解液与电极接触角;电解液粘度。

 

实验测试采集到的典型质量—时间曲线如下图所示,极片浸入电解液后,表面吸收电解液,质量迅速增加。之后,电解液在电极孔隙内浸润,质量慢慢增加,电解液浸润速率主要分析这个过程的曲线求得,电解液下降离开极片后质量迅速降低,再电极表面的电解液滴落质量缓缓下降。

 

 

典型的电解液浸润过程极片质量—时间曲线

 

 

对电解液浸润阶段的曲线进行分析,如图2-2b所示。根据公式2-1a,横坐标为时间的平方根,纵坐标为质量/(样品横截面积·电解液密度),作图。对曲线进行线性拟合,直线斜率即为电解液浸润速率K。
 

 

正负极极片对比

 

 

正极95%NMC,颗粒直径d50=7-10微米。

负极95%石墨,d50=6-9微米。

电解液EC:EMC=3:7,1.2M LiPF6。

 

正负极极片分别测试了15个样品,数据分布如图2-3所示,计算平均值列入表2-1中。负极极片电解液浸润速率比正极极片大(0.244 > 0.175),负极吸附电解液更快。

 

 

 

 

 

 

 

浸润速率和极片微结构关联,压汞法测试极片孔结构,如图2-5所示。极片种的孔可以分为两类,(I)大孔,颗粒之间的孔隙;(II)小孔,颗粒内部的孔隙。孔腔之间通过喉道联通。从图中分析计算两类孔的参数,列入表2-3,负极总孔隙率比正极大,负极平均孔径也比正极大,负极小孔占总孔比值高,孔隙联通性更好,图2-6是正负极极片形貌对比。因此,负极浸润速率更快。

 

 


 

极片压实密度影响

 

 

相同面密度,四种不同压实密度的负极极片孔隙率,平均孔径,浸润速率如表3-2所示。根据公式2-1b,横坐标为孔隙率*孔径的平方根,纵坐标为浸润速率,做线性拟合,拟合相关性不是特别好,如图3-3所示。

 

 

 

 

浸润速率与微观结构建立联系。图3-4是四种极片的形貌,片状石墨倾向于平行集流体排列,而且随着压实增加,这种平行排列倾向增加,如图3-8所示。

 

 

 

 

如图3-9,三个或四个大的石墨颗粒之间形成较大的孔腔,而孔腔之间通过两个平行颗粒之间的狭长通道联通,电解液先在孔腔内汇聚,然后扩散到附近的喉部。因此,电解质的润湿速率主要受联通孔腔之间的喉咙和孔腔体积控制。

 

 

 

 

 

导电剂比例的影响

 

 

石墨负极通过改变导电剂比例控制极片微观结构,粘结剂CMC:SBR=1:1,总含量为3%,具体导电剂比例如表4-1所示。

 

 

 

 

三种极片的电解液浸润速率如表4-2所示,增加导电剂,极片孔隙率增加,孔径也增加。5%导电剂的极片电解液浸润速率最小,这与孔结构特征有关,如图4-6所示,导电剂含量少(3%)时,活性物质颗粒之间的孔腔内几乎没有导电剂存在,随着导电剂含量增加(5%),活性物质颗粒之间的孔腔没填充着导电剂,形成了导电剂域内的细小孔隙,而导电剂进一步过量(7%)时,由于导电剂高度团聚,在孔腔内的导电剂又会形成导电剂域内的较大孔隙。导电剂内部的细小孔隙不利于电解液扩散,因此综合结果如表4-2所示。

 

 

 

 

 

 

Figure 4-6 Typical void feature in different electrode film. a, bare pore wall in 3%CB, b, microcrack between CB domain and graphite 5%CB, c, a second pore formed in the CB domain in 7%CB.

 

论文还讨论了溶剂与添加剂对电解液浸润速率的影响,具体结果如表5-1和5-2所示,具体揭示可以参照公式2-1b。据了解该博士论文作者目前在ATL任职。

 

 

 

 

总结:石墨负极的电解液浸润速率大于正极,这与孔隙率和孔径相关,而浸润速率还受到孔结构特征影响,比如孔腔之间的喉道尺寸,小孔和大孔的比例与分布等。而孔结构主要可以通过辊压工艺,材料形貌,导电剂含量等控制。

 

文献:Sheng Y. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution[J]. Dissertations & Theses - Gradworks, 2015.


(责任编辑:子蕊)
文章标签: 电池 电解液 极片
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:503204601
邮箱:cbcu@cbcu.com.cn
猜你喜欢
专题
相关新闻
  • 无EC高压高安全电解液

    传统的基于LiPF6/ EC的电解液已经主导电解液市场超过25年,但它们很难应对新的电池化学,并因其高可燃性而受到强烈质疑。 由于EC溶剂对造成性能下降和热失控(TR)前的初始自热的表面副反应,以及引发电池TR的放热反应都有很大的贡献,因此建立 无EC 电解液是
    2021-11-03 15:49
  • 锂电池极片设计及表面缺陷分析

    锂电池极片的设计是非常重要的,现针对锂电池极片设计基础知识进行简单介绍。
    2021-06-03 11:34
  • 干货|极片设计基础、常见缺陷和对电池性能的影响

    锂电池电极是一种颗粒组成的涂层,均匀的涂敷在金属集流体上。
    2020-11-17 11:13
  • 液晶电解质在锂离子电池中的应用进展

    发展高性能新型电解质是解决传统锂离子电池安全性和能量密度不足等问题的重要途径。
    2020-10-29 09:25
  • 电池电解液对金属锂负极的影响

    金属锂负极的理论比容量为3860mAh/g,电位仅为-3.04V(vs标准氢电极),是一种理想的锂离子电池负极材料,搭配高容量的正极材料,可以轻松实现400Wh/kg以上的能量密度。
    2020-10-18 16:12
  • 循环老化对于锂离子电池中锂和电解液分布的影响

    锂离子电池在循环的过程中持续的界面副反应,会引起电解液消耗和活性Li的损失。
    2020-10-05 17:23
  • 磷酸铁锂动力电池电解液改善及过程参数优化

    锂电联盟会长 现在锂离子电池技术还有待进一步发展方能满足电动车更高的应用需求,下一代锂离子电池必须具备大容量、高比能量、长寿命、高安全性等特点,这就要求锂离子电池要向高能量密度方向发展。 为了寻找高能量密度材料,主要是通过提高材料的压实密度
    2020-06-02 15:08
  • 锂离子电池极片辊压工序详解

    极片辊压是一个锂离子电池生产过程中一个重要的环节,其目的是获得符合设计要求的极片。
    2020-05-04 15:09
本月热点
欢迎投稿
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-56284224
在线投稿
微信公众号